

# MCSAFER - HIGH-PERFORMANCE ADVANCED METHODS AND EXPERIMENTAL INVESTIGATIONS FOR THE SAFETY EVALUATION OF GENERIC SMALL MODULAR REACTORS

### AIM

The aim of the McSAFER project is to advance the safety research for SMRs by combining experimental investigations and numerical simulations.

### **OBJECTIVES**

- **Perform key experimental investigations** in European thermal hydraulic test facilities COSMOS-H (KIT), HWAT (KTH) and MOTEL (LUT) with focus on SMR-relevant phenomena in the core and in the reactor pressure vessel to provide data for code validation.
- Validation of thermal hydraulic codes with the experimental data to increase the confidence in the numerical tools used for safety demonstration.
- Improve the neutron physical, thermal hydraulic, and thermo-mechanic simulation of SMR-cores under static and accidental conditions and demonstrate the complementarity of advanced and high-fidelity core analysis methods with traditional ones.
- Improve the simulation of the three-dimensional thermal hydraulic phenomena inside the reactor pressure vessel of the integrated SMR-concepts by using multiscale thermal hydraulic tools in combination with traditional one-dimensional system thermal hydraulic codes.
- **Apply the improved and validated numerical tools** for the analysis of selected accidents in SMR-plants (NuScale, SMART) and compare the results with the ones of traditional methods
- **Provide advanced computational tools** capable of performing safety analysis in accordance with the European WENRA-requirements and considering specifics of national regulatory guidelines for the near-term deployment of SMRs in Europe.
- **Demonstrate the advantages** of the use of high-fidelity codes in practical licensing process and the complementarity of low-order and high order solvers to reduce conservatism in safety demonstrations and enhance operational flexibility in a mixed grid of carbon-free electricity generation.

# PROJECT START

1st September 2020

# PROJECT END

31st August 2023 (36 months)

# EC FUNDING

4.045.133,75 €

# MOTEL TEST FRCILITY 30-MIDGEL NUSCRIE VESSEL SCRIERR MIXIND CONTOURS OF STATIC TEMPERATURE (K)

# PARTNER

















# PROJECT COORDINATION

Dr. V. H. Sanchez-Espinoza

Karlsruhe Institute of Technology, Germany
Institute of Neutron Physics and Reactor Technology (INR)

www.mcsafer-h2020.eu













